

BOSTON PUBLIC LIBRARY

Digitized by the Internet Archive in 2018 with funding from Boston Public Library

THE

ECLIPSE OF THE SUN

${ }^{\text {or }}$

MA $\dot{\mathrm{Y}} 26,1854$.

From the Proceedings of the American Academy.

At the meeting of the American Academy of Arts and Sciences, March 14th, 1853, Mr. Paine made the following communication on the approaching eclipse of the sun :-
"On the afternoon of Friday, the 26th of May next, there will be an eclipse of the sun visible and generally large throughout the United States, and actually annular in part of the Territories of Washington vol. III. 13
and Minnesota, of Vancouver's Island, of Canada West, and of the States of Michigan, New York, Vermont, New Hampshire, Maine, and Massachusetts.
"A central, or very nearly central, solar eclipse, at any place, is indeed of rare occurrence. At the city of Paris only one takes place in the 133 years between 1767 and 1900, and although in Boston we have been more favored than Paris, the phenomenon in the century and a quarter between 1775 and 1901, and perhaps many more years, occurs here but four times; namely, in the annular obscurations of April 2, 1791; May 26, 1854 ; and September 28, 1875 ; and in that which was total, ón June 16, 1806. The eclipse of February 12, 1831, was also annular at Nantucket and at Chathám, Cape Cod, but not elsewhere in New England.
" From computations, the results of which are more particularly given below, it appears that the path of the central eclipse of the 26th of May first enters upon the earth in the North Pacific Ocean near the Caroline Islands, in Lat. of about $6 \frac{1}{2}^{\circ}$ North, Long. 197° West ; thence taking a northeasterly direction, it touches our continent near Cape Flattery in Washington Territory; it thence passes over Vancouver's Island, British Oregon, Minnesota, Isle Royale, Lake Superior, Canada West, New York, Vermont, New Hampshire, and Maine, to the Atlantic, where it leaves the earth in Lat. of about 36°, Long. 52°, having in $3^{\mathrm{h} .} 41^{\mathrm{m} .} 21^{\mathrm{s}}$, the time of its continuance thereon, run over $145 \frac{1}{2}$ degrees of longitude and 56 of latitude.
" It, moreover, appears that the duration of the ring, where central, in Washington Territory, is four and a half minutes, (which is nearly its longest duration at any place, and in New York and New England somewhat less than four, although the ring is about ten seconds broader, and the distance between the lines of the northern and southern limits of the annular phase about thirty miles greater in the northeastern than in the northwestern part of the United States.
"In the Northeastern States, these limits will be well represented by lines drawn on a map, one from the southwestern part of the island of Montreal, over the southern part of the towns of Gardiner and St. George in Maine, to the ocean, and another from Ameliasburg in Canada West, over Ellisburg and Saratoga Springs in New York, Bennington, Vt., Leyden, Sterling, Dedham, Marshfield, and Orleans, in Massachusetts. These lines will be nearly parallel, and distant about 145 English miles, and will include between them the northeastern part of New York,
nearly the whole of Vermont, all but the northern part of New Hampshire, the southwestern part of Maine, and, in Massachusetts, the northeastern part of the counties of Franklin, Worcester, Norfolk, Plymouth, and Barnstable, nearly the whole of Middlesex, and the whole of Suffolk and Essex. A third line, drawn nearly equidistant between the two others, from the southern part of Isle Royale in Lake Superior to Ogdensburg, N. Y., thence over Middlebury, Vt., Hanover, Sanbornton, Gilmanton, and Rochester, N. H., to the ocean at Cape Neddock in York, Maine, will represent the path of the central eclipse; as a fourth, from Gibraltar Point, near Toronto, C. W., over Delhi and Kingston, N. Y., Middletown, Conn., to Block Island, R. I., will that of the line of eleven digits of obscuration on the north limb of the sun.
"As sixty-three years have passed since the occurrence of the last annular eclipse in New England, and as in the last forty-six years of the present century only one more will take place, it is not doubted that the one of May 26th will be viewed with interest by every spectator ; but it is hoped that those observers, within the limits of the ring, who may be provided with a good telescope, will give particular attention to the singular appearances which so often have been noticed at the second and third contacts, and which, in consequence of having been minutely described by the late Mr. Bailly, are known by his name, especially as there is some reason for the suspicion that these beads, \&c. may be seen or not, at the pleasure of the observer, according as he employs a screen colored red or green.
"In the eclipse of February 12, 1831, which was viewed by the writer at the light-house on Monomoy Point, off Chatham, with a red screen, these beads were, just before the formation of the ring, so very conspicuous, that it was difficult to determine with precision when it actually took place, whilst in that which was annular in Washington in September, 1838, and that which was total near Savannah in November, 1834, these appearances could not be perceived by him, although carefully looked for through a screen composed of two glasses, one shaded light red, the other light green.
"Indeed, it is particularly desirable that at some places there will be two observers furnished with telescopes of nearly the same optical power, but with screens colored green and red, who, after the second contact, shall exchange their instruments for their observations on the third, and shall note carefully the appearances and phenomena by which each contact is attended.
"The elements of the moon used for the following computations (except the parallax and semidiameter) are the mean of the quantities deduced from the tables of Damoiseau and Burckhardt. Those of the latter were taken from the English and French Nautical Almanacs, but those of Damoiseau were computed for May 26th, $6,8,10$, and 12 hours of Paris, and thence interpolated for every hour of the meridian of Greenwich. Whilst the difference of the tables in latitude is small, or about a second and a half, in longitude it is very considerable, or eleven seconds. For the parallax, that of Burckhardt was preferred, as corrected by Mr. Adams, one of the distinguished discoverers of the planet Neptune, who, in a memoir affixed to the Nautical Almanac for 1856 , appears to have thoroughly investigated the subject.

Path of the Central Eclipse of the Sun over the Earth, Friday, May 26, 1854, according to the Tables of Damoiseau and Burckhardt, for every Fifth Minute whilst crossing the North Pacific Ocean, and for every Minute of the Remainder of the Time of its Continuance on the Earth.

Mean Time at Greenwich.

Mean Time Gr.	Eclipse Lat. North.	Central in Long. West.	Mean Time Gr.	Eclipse Lat. North.	Central in Long. West.
$\begin{array}{llll}\text { h. m. s. } \\ \\ 6 & 54 & 55\end{array}$	63^{18}	197	${ }_{8}^{\text {h. }} 3$.		440
550	723	19522	350	423	14254
$55 \quad 2$	738	19434	40 0	4258	1414
$55 \quad 6$	759	19346	450	4350	13911
65730	1118	18711	50 0	4439	13713
$7 \quad 0 \quad 0$	1311	18318	550	4526	13511
50	1612	17835	* 85555	4534.1	13447.6
100	1837	17443	$9 \quad 0 \quad 0$	4610	1332.9
150	2045	17140	50	4650	13050.0
200	2240	16915	100	4727	12830.3
250	2426	167 0	150	$48 \quad 0.5$	$126 \quad 3.5$
30 0	$26 \quad 5$	16457	160	$48 \quad 6.7$	12533.4
350	2739	163 2	$\begin{array}{llll}9 & 17 & 0\end{array}$	4812.8	$125 \quad 3.0$
$40 \quad 0$	$29 \quad 8$	16114	Washington Territory.		
450	-30 33	15930			
$50 \quad 0$	3155	15750	9180	4818.7	12432.3
7550	3314	15612	19 0	24.4	1241.3
$8 \quad 00$	3429	15435	200	30.0	12330.1
50	3541	15258	210	35.4	12258.5
$10 \quad 0$	3651	15121	220	40.6	12226.6
150	3758	14944	230	45.7	12154.3
$20 \quad 0$	$39 \quad 3$	1485	240	50.5	12121.7
8250	$40 \quad 5$	14624	9250	4855.2	12048.9

[^0]| Mean Time Gr. | Eclipse
 Lat. North. | entral in
 Long. West. | Mean Time Gr. | Eclipse
 Lat. North. | entral in Long. West. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{\text {h. }} \mathrm{m} . \mathrm{m}^{\text {s. }}$ | is | | h. m. s. | | - |
| | | | Isle R | e, Lake | erior. |
| | ish Oregor | | 1090 | $48 \quad 0.7$ | 8937.3 |
| 9270 | 494.0 | 11942.4 | | | |
| 280 | 8.1 | 1198.6 | | S Super | |
| 290 | 12.0 | 11834.5 | 10100 | 4750.2 | 8840.0 |
| 300 | 15.7 | 1180.0 | 110 | 38.9 | 8741.4 |
| 310 | 19.2 | 11725.1 | 120 | 27.0 | 8641.5 |
| 320 | 22.5 | 11649.8 | 10130 | 4714.3 | 8540.1 |
| 330 | 25.6 | 11614.2 | | | |
| 340 | 28.5 | 11538.2 | | nada W | |
| 350 | 31.1 | 1151.9 | 1014 | $47 \quad 0.9$ | 84.37 .2 |
| 360 | 33.5 | 11425.2 | 150 | 4646.6 | 8332.6 |
| 370 | 35.7 | 11348.2 | 160 | 31.3 | 8226.3 |
| 380 | 37.6 | 11310.7 | 170 | 4614.8 | 8117.9 |
| 390 | 39.3 | 11232.8 | 180 | 4557.1 | $80 \quad 7.2$ |
| 400 | 40.8 | 11154.6 | 19 0 | 38.0 | 7853.9 |
| 410 | 42.0 | 11116.0 | $20 \quad 0$ | $45 \quad 17.5$ | 7737.6 |
| 420 | 43.0 | 11036.9 | 210 | 4455.3 | 7617.8 |
| 430 | 43.7 | 10957.4 | 2115 | 49.5 | 7557.2 |
| 440 | 44.1 | 109 17.5 | 102130 | 4443.5 | 7536.4 |
| *450 | 44.3 | 10837.1 | State of New York. | | |
| 460 | 44.2 | 10756.3 | | | |
| 470 | 43.8 | 10715.0 | 102145 | 4437.4 | 7515.3 |
| 480 | 43.1 | 10633.2 | 220 | 31.2 | 7453.9 |
| 490 | 42.0 | 10550.9 | 2215 | 24.8 | 7432.3 |
| 500 | 40.6 | 1058.1 | 2230 | 18.3 | 7410.3 |
| 510 | 39.0 | 10424.9 | 102245 | 4411.6 | 7348.0 |
| 520 | 37.0 | 10341.1 | Lake Champlain. | | |
| 530 | 34.7 | 10256.8 | | | |
| 540 | 32.0 | 10211.9 | | | |
| 550 | 28.9 | 10126.4 | State of Vermont. | | |
| 560 | 25.5 | 10040.4 | | | |
| 570 | 21.7 | 9953.8 | 10 23 15 43 57.8 73 2.4 | | |
| 580 | 17.5 | 996.5 | 2330 | 50.6 | 7239.0 |
| 9590 | 12.9 | $98 \quad 18.6$ | 10
 13 | | |
| $10 \quad 00$ | 7.9 | 9730.1 | State of New Hampshire. | | |
| 10 | $49 \quad 2.5$ | 9641.0 | | | |
| 20 | 4856.6 | 9551.1 | 10 24 0 43 35.7 71 51.2 | | |
| 30 | 50.2 | 950.4 | | 27.9 | 7126.7 |
| $10 \quad 40$ | 4843.3 | $94 \quad 8.9$ | 2415 | 4319.9 | 71 |
| N. E. Corner of Minnesota Terr. | | | State of Maine. | | |
| 1050 | 4835.9 | 9316.6 | | | |
| 60 | 28.0 | 9223.2 | Atlantic Ocean. | | |
| 70 | 19.5 | 9128.8 | | | |
| $10 \quad 80$ | $48 \quad 10.4$ | 9033.5 | $1025 \quad 0$ | $43 \quad 3.2$ | 7010.1 |

[^1]| Mean Time Gr. | Eclipse Central in
 Lat. North. Long. West. | | Mean Time Gr. | Lat Eclipse at. North. | Long. West. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | 42×2 | 6818.2 | $\begin{array}{cccc} \\ \mathrm{h} . & \mathrm{m} . & \mathrm{s} . \\ 10 & 30 & 0\end{array}$ | 3754.2 | 55 |
| 270 | 4143.7 | 6613.9 | 3012 | 3750.7 | 5356.7 |
| 280 | 4052.4 | 6348.9 | 3015 | 3641.8 | 5257.3 |
| 10290 | 3945.4 | 6047.5 | $10 \quad 3016.1$ | 3617.4 | 5156.8 |

Duration of the eentral eclipse on the earth, $3^{\mathrm{h} .} 41^{\mathrm{m} .} 21^{\mathrm{s}} .1$.
According to the Tables of Damoiseau and Burckhardt, the eclipse at the following places will be annular, and take place as follows, in mean time of the respective places : -

Latitude, Longitude,	Boston.	Brunswick, Me.	Cambridge Obs.
		$\stackrel{\circ}{43} 5$	+12 21218
	$\begin{array}{llll}71 & 3 & 37\end{array}$	6955	71730
		h. 4 4 m.	$\begin{array}{llll}\text { h. } \\ 4 & \text { m. } \\ 4 & \text { s. } \\ 58 . \\ 52.5\end{array}$
Formation of the Ring,	54028	54310	5408.6
Least distance of centres,	4127	4421	418.8
Rupture of the Ring,	54227	54532	5429.1
End of the Eclipse,	64733	6508	6476
Duration of the Ring,	159	222	20.5
" Eclipse,	22021	21921	22023.5
At leastdistance. Distance$\left\{\begin{array}{l}\text { of north limbs, } \\ \text { of centres, } \\ \text { of south limbs },\end{array}\right.$	7.25	92.66	7.37
	44.43	40.94	44.30
	96.11	10.7	95.98
Point of beginning, ". end,	150.5	151.5	150.5
	34.0	38.1	34.0

Latitude, Longitude,	Concord, N. H.	Hanover, N. H.	Middebury, Vt.
	$4{ }^{\circ} 12120$	$4{ }^{\circ} 4{ }^{\prime}{ }^{\prime}{ }^{2 \prime 6}$	$\stackrel{\circ}{4}{ }^{\circ}$
	7129	721645	7310
Eclipse begins, Formation of the Ring,	$\begin{array}{llll}\text { h. m. } \\ 4 & 24 & \text { s. } \\ \\ 5 & 8 & 8\end{array}$	$\begin{array}{llll}\text { h. } & \text { m. } & \text { s. } \\ 4 & 19 & 4 . \\ 4 & 4.4\end{array}$	$\begin{array}{cccc}\text { h. } \\ 4 & \text { m. } & \text { s. } \\ 4 & 15 & 3\end{array}$
	53643	53241.0	52832
Least distance of centres,	3838	3438.6	3030
Rupture of the Ring,	54032	53636.2	53228
End of the Eclipse,	6450	64125.4	63742
Duration of the Ring, ". " Eclipse,	349	355.2	356
	22052	22143.0	22239
At least distance. Distanceof north limbs, of centres, of south limbs,,	33.61	50.66	51.33
	11.91	0.66	0.19
	63.43	51.98	50.99
Point of beginning, " end	150.8	150.7	150.5
	35.5	36.0	35.9

	Ogdensturg, N. Y.	Portsmouth, N. H.	Scarboro' Harbor.
Latitude,	${ }_{4}^{\circ} 4{ }^{\prime}{ }^{\prime \prime}{ }^{\prime \prime} 0$		$\stackrel{\circ}{88} \stackrel{1}{1} 149$
Longitude,	753130	704518	1243712
Eclipse begins,	h. 4 m.		hil m. ${ }^{\text {m. }}$
Formation of the Ring,	51729	53955	05711
Least distance of centres,	1928	4152	05926
Rupture of the Ring,	52126	54347	1140
End of the Eclipse,	62746	64754	23341
Duration of the Ring,	357	352	429
" Eclipse,	2256	$220 \quad 7$	31049
At least of north limbs,	50.80	44.32	46.48
distance. of centres,	0.16	7.35	3.37
Distance (of south limbs,	50.48	59.02	39.74
Point of beginning,	149.9	150.9	101.4
" end,	35.6	35.1	32.0

At the following places the eclipse will not be annular. The obscuration at Halifax, N. S., Charlottetown, P. E. I., and Montreal, being on the southern side of the sun, and at the other places on the northern.

Latitude North, Longitude West,	Charlottetow P. E. Island.	Georgetow		
		${ }^{\circ} 8854{ }^{\prime}{ }^{\prime \prime} 6$	443920	
	638	$77 \quad 433$	$63 \quad 26 \quad 8$	723830
Eclipse begins, Greatest obscuration, End of Eclipse, Duration,	h. m. 4 59 4 59		h. m. 4 59 58.8	
	$6 \quad 94$	51945.2	6	53543.9
	12	62728.8	71259.0	64221.4
	21235	22455.6	2136.2	22141.8
Point of beginning, ." end, Digits eclipsed,	154.5 48.1	147.1 21.8	153.7 44.8	149.6 31.1
	10.147	9.814	10.594	11.013

Latitude North, Longitude West,	Nantucket Ob	C. H .	Philadelphia Observatory.	$\begin{aligned} & \text { Portland, Ore- } \\ & \text { gon. } \end{aligned}$
	${ }^{\circ} 111^{1} 656$	$\stackrel{\circ}{0} 4240$	$\stackrel{\circ}{99} 5{ }^{\prime} 79 \%$	$4{ }^{\circ} 30.1$
	$70 \quad 540$	$74 \quad 0 \quad 30$	75100	12227.5
Eclipse begins, Greatest obscuration, End of Eclipse, Duration,	h. 4 m. s. 8.8 58	${ }^{\text {h. }}$		
	54646.0	53055.8	52648.8	11110
	65216.4	63755.1	6346.9	246
	2 1976	22246.2	22335.1	314.58
Point of beginning, " end,	150.3 32.6	188.9 28.2	148.2 25.6	97.9 22.0
Digits eclipsed,	11.173	10.640	10.306	10.675

	$\begin{aligned} & \text { Providence Obs. } \\ & \text { R. I. } \end{aligned}$	San Francisco,	Toronto Obs., Canada West.	Williamstown Obs., Mass.
Latitude	414931	${ }^{3} 7{ }^{\prime}{ }^{\prime} 7{ }^{\prime \prime}{ }^{\prime \prime}$		1 42 42 49
Longitude West,	712415	1222648	792130	$73 \quad 1237$
Eclipse begins,	h. m. 4 26 4 s.		h. 3 44	${ }_{\text {h. }}^{\text {h. m. }}$ m. ${ }^{\text {s. }}$
Greatest obscuration,	54038.6	1359	$\begin{array}{llll}5 & 3 & 50.0\end{array}$	53154.5
End of Eclipse,	64647.1	24555	61350.4	63858.2
Duration,	22032.5	32052	2299.8	22232.2
Point of beginning,	150.2	76.2	148.3	150.0
" end,	32.7	2.8	30.6	33.2
Digits eclipsed,	11.207	8.123	11.059	11.301

At Eastham Church, Cape Cod, Mass., in Lat. $41^{\circ} 50^{\prime} 26^{\prime \prime}$, Long. $69^{\circ} 58^{\prime} 40^{\prime \prime}$, the least distance of the centres ($51^{\prime \prime} .81$) will take place at $5^{\mathrm{b} .} 46^{\mathrm{m} .} 31^{\mathrm{s} .}$; diff. of semidiameters $51^{\prime \prime} .94$; from which it appears that the line of the southern limit of the ring passes on to the Atlantic about two miles south of Nausett lights, or in Lat. $41^{\circ} 49^{\prime} 37^{\prime \prime}$, Long. $69^{\circ} 56^{\prime} 50^{\prime \prime}$.

At Montreal, Canada, Lat. $45^{\circ} 31^{\prime}$, Long. $73^{\circ} 35^{\prime}$, the least distance, $62^{\prime \prime} .3$, will be at $5^{\mathrm{h} .} 26^{\mathrm{m} .} 40^{\mathrm{s} .}$; and as the difference of the semidiameters will be $51^{\prime \prime} .5$ only, the eclipse will not be annular there, but probably will be so in the southwestern extremity of Montreal Island.

The village of Saratoga Springs, N. Y., Lat. $43^{\circ} 3^{\prime}$, Long. $73^{\circ} 43^{\prime}$, appears to be situated exactly under the line of the southern limit of the ring, as the least distance of the centres ($51^{\prime \prime} .2$), which occurs at $5^{\mathrm{h}} 29^{\mathrm{m}} .3$, is, according to the tables, the same as the difference of the semidiameters.
The difference between the absolute or Greenwich times of the beginning at Georgetown, New York, Boston, Brunswick, Charlottetown, $\& c$., is quite small, or less than two minutes, or from $9^{\text {h. }} 10^{\mathrm{m} .} 27^{\mathrm{s}}$. to $9^{\mathrm{h}} 12^{\mathrm{m} .} 3^{\text {s. }}$. The time at any other place between them, and near the Atlantic, may therefore be easily ascertained with a good degree of accuracy, and without a direct computation, by subtracting its longitude from about $9^{\mathrm{h} .} 11^{\mathrm{m}}$, and in this manner the time of the beginning at the following cities and towns was ascertained. The angle of the point at which the first impression will be made on the sun, or at which the eclipse will commence, is reckoned from the vertex to the right hand, and that at which the obscuration will end, from the vertex to the left (except at San Francisco, where it is also to the right), as
seen through an erect telescope. For one that inverts, it is necessary to add 180°.

At those places marked with an asterisk, the eclipse will be annular.

Place.	$\begin{gathered} \text { Eclipse } \\ \text { bespins } \\ \text { be. M. } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Angle } \\ \text { fron } \\ \text { Vertex. } \end{gathered}\right.$	Place.	$\begin{aligned} & \text { Eclipse } \\ & \text { besemins } \\ & \text { he. M. } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { Angle } \\ \text { frome } \\ \text { Vertex. } \end{gathered}\right.$
Albany, N. Y.,	$\begin{array}{ll} \mathrm{h} \cdot \mathrm{~m} . & \mathrm{m} .0 \\ 4 & 14.0 \end{array}$	150	N. Bedford, Mass.,	¢ 428.6	150
Amherst, Mass.,	420.2	150	* Newburyp't, Ms.,	427.5	151
*Andover, Mass.,	426.4	151	N. Haven, Conn.,	419.5	149
Annapolis, Md.,	45.0	148	Newport, R. I.,	427.0	150
Baltimore, Md.,	44.5	147	Norwich, Conn.,	423.5	150
Bangor, Me.	436.0	153	*Plattsburg, N.Y.,	412.2	150
Burlington, N. J.,	411.7	148	Plymouth, Mass.,	429.3	150
*Burlington, Vt.,	414.3	151	*Portland, Me.,	429.7	151
*Dover, N. H.,	427.1	151	Princeton, N. J.,	412.5	148
Eastport, Me.,	443.5	153	*Provincetown,Ms.,	431.5	151
* Exeter, N. H.,	427.0	151	*Salem, Mass.,	427.6	151
*Gloucester, Mass.,	428.0	151	Springfield, Mass.,	420.5	150
*Lowell, Mass.,	425.5	151	Trenton, N. J.,	412.1	148
Montreal, C. E.,	411.3	151	West Point, N. Y.,	414.6	149
Newark, N. J.,	414.5	149	Worcester, Mass.,	424.1	

Elements of the Eclipse. Mean Time at Greenwich.

ur.	$\bigcirc{ }^{\circ}$ s	\bigcirc 's Lat.	- ${ }^{\text {s Right }}$	Declination.	Semidiam.	Sid. Time.
	${ }_{6}^{\circ} \mathrm{C} \quad 3 \quad 326.60$	N.0.05	${ }^{\circ} 3$	$1{ }^{\circ} 1935.18$	1548	41544.14
6	550.55	. 06	926.47	$10 \quad 1.08$	48.90	1554.00
7	814.50	. 06	1158.32	1026.94	48.89	163.86
8	1038.45	. 07	1430.19	1052.77	48.8	1613.71
9	132.40	. 08	17 : 2.07	1118.56	48.8	1623.57
10	1526.35	. 08	1933.97	1144.31	48.87	1633.43
11	1750.30	. 09	$22 \quad 5.87$	1210.02	48.87	16
12	652014.2	. 09	632437.7	1235.	48,	

〇’s Horizontal Parallax, $8^{\prime \prime} .46$; Obliquity, $23^{\circ} 27^{\prime} 34^{\prime \prime} .1$; Ellipticity, $\frac{1}{30}{ }^{\frac{1}{0}}$ th.

Lunar Elements by Burckhardt and Damoiseau.

Hour.	Moon's Right Ascension.		Moon's Declination.		$\begin{aligned} & \text { Dam } \\ & \text { Moon's } \\ & \text { Eq. Par. } \end{aligned}$	seau's Semidiam eter.
5	${ }^{\circ} 11^{\prime} 4^{\prime \prime} 5.22$		048.77		433.58	14518.49
6	614514.75		916.78		32.82	52.28
7	621627.01	3112.26	1738.84	822.06	32.07	52.07
8	624741.99	3114.98	2554.90	816.06	31.32	51.87
9	631859.61	3117.62	$34 \quad 4.91$	810.01	30.58	51.67
10	635019.93		$42 \quad 8.83$		29.86	51.47
11	642142.94		$50 \quad 6.64$		29.16	51.28
12	64538.62	21	5758.31		5428.51	1451.10

C

[^0]: * On the meridian of the place.

[^1]: * Greatest north latitude of the central path.

